Symbolic regression of generative network models
نویسندگان
چکیده
منابع مشابه
Symbolic regression of generative network models
Networks are a powerful abstraction with applicability to a variety of scientific fields. Models explaining their morphology and growth processes permit a wide range of phenomena to be more systematically analysed and understood. At the same time, creating such models is often challenging and requires insights that may be counter-intuitive. Yet there currently exists no general method to arrive...
متن کاملSymbolic Regression on Network Properties
Networks are continuously growing in complexity, which creates challenges for determining their most important characteristics. While analytical bounds are often too conservative, the computational effort of algorithmic approaches does not scale well with network size. This work uses Cartesian Genetic Programming for symbolic regression to evolve mathematical equations that relate network prope...
متن کاملnetwork of phonological rules in lori dialect of andimeshk: a study within the framework of post-generative approach.
پژوهش حاضر ارائه ی توصیفی است از نظام آوایی گویش لری شهر اندیمشک، واقع در شمال غربی استان خوزستان. چهارچوب نظری این پژوهش، انگاره ی پسازایشی جزءمستقل می باشد. این پایان نامه شامل موارد زیر است: -توصیف آواهای این گویش به صورت آواشناسی سنتی و در قالب مختصه های زایشی ممیز، همراه با آوانوشته ی تفصیلی؛ -توصیف نظام آوایی گویش لری و قواعد واجی آن در چهارچوب انگاره ی پسازایشی جزءمستقل و معرفی برهم کن...
On Network Models and the Symbolic Solution of Network Equations
This paper gives an overview of the formulation and solution of network equations, with emphasis on the historical development of this area. Networks are mathematical models. The three ingredients of network descriptions are discussed. It is shown how the network equations of one-dimensional multi-port networks can be formulated and solved symbolically. If necessary, the network graph is modifi...
متن کاملSymbolic Rule Representation in Neural Network Models
Symbolic knowledge extraction from mapping/extrapolating neural networks is presented in the paper. An algorithm to obtain crisp rules in the form of logical implications which roughly describe the neural network mapping is introduced. The number of extracted rules can be selected using an uncertainty margin parameter as well as by changing the precision of the soft quantization of the inputs. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2014
ISSN: 2045-2322
DOI: 10.1038/srep06284